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Fidelity measures of a numerical discretization method.

@ Numerical fidelity: convergence and stability indicate how
well the mathematics of the PDE are represented by the
numerical method.

@ Physical fidelity: how well the physics of the system are
preserved by the numerical method.

@ Preserving the key physical quantities during the numerical
solution is important to avoid non-physical numerical
artefacts.
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Key physical quantities to preserve:

@ Conservation of primary quantities: mass and momentum.
@ Conservation of secondary quantities: (. perot, Annu. Rev. Fluid Mech. 2011]

e Vorticity: Important for turbulence and shallow water
simulations.

e Kinetic energy: Important for large-eddy simulation of
turbulent flow.

e Entropy: Important for compressible flow simulations.
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Examples of mumerical methods with conservation properties.

@ Mass:

Finite volume method.

Classic finite element method.

Discontiuous Galerkin method.

Staggered mesh methods on Cartesian meshes.
Covolume method on unstructured meshes.

e Vorticity:
e Staggered mesh methods on Cartesian meshes.
e Covolume method on unstructured meshes.

@ Kinetic energy:

o Staggered mesh methods on Cartesian meshes.
e Covolume method on unstructured meshes.
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The covolume method

@ The covolume method, originally
introduced by Nicolaides (1989) and
Hall et al. (1991), is a low order
method that is free of spurious modes.

@ The covolume method convergence
was estimated by Nicolaides (1992) to
be of second order rate for
structured /semi-structured meshes
and first order accurate otherwise.
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The covolume method

@ The local/global conservation properties of the covolume
method were later revealed by Perot (2000).

@ The conservative behavior of the covolume method is
attributed to the discrete differential operators that mimic the
behavior of their smooth counterparts.

@ The resulting discrete system can be manipulated into discrete
conservation statements for key physical quantities.

@ The covolume method conserves mass, momentum, vorticity
and kinetic energy.
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Discrete Exterior Calculus Discretizations

@ In computer graphics some the Discrete Exterior Calculus
(DEC) approach to simulate incompressible flows.

@ The developed discretizations [Elcott et. al (2007) and Mullen et.
al (2009)] have similarities with the covolume method, but are
applicable on both flat/curved surfaces.

@ The convective term is approximated through
finite-volume-based or back tracing of characteristics and
interpolation schemes.

o Little quantitative analysis of the scheme performance is
presented.
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@ Use Discrete Exterior Calculus (DEC) to derive a conservative
discretization of incompressible Navier-Stokes equations that
is applicable for 2D flat/curved and 3D domains with
unstructured meshes.

@ Conduct quantitative analysis for numerical convergence and
conservation.
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Navier-Stokes Equations

% —pAu+ (u.V)u+vVp=0

vu=0

Using the vector identities:
Au=V(V.u) -V x(V xu)

(u.V)u = %V(u.u) —ux(Vxu)

Define the dynamic pressure: p? = p + %(u.u)

0
a—ttl+,uV><V><u—u><(V><u)+Vpd=0

vu=0
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Navier-Stokes Equations in Differential Geometry Notation

0
a—l:+,uV><V><u—u><(V><u)+Vpd=0

vVu=0

For any vector field u and a scalar field f:
(Vxvxu) = (DN s d«du,
(ux (vxu))’ = (-1)"x (u* A *dub),
(V.u)I7 = xd *u’,

(VF)' =df
ou’ N+1 N+2 b _
B + (DM s d w du’ + (-1D)N2 % (uh A xdu®) +dp9 = 0,
«d*u’ =0 9 s

Samtaney, NASA Ames, July 30 2015 Navier-Stokes DEC



An Alternative Derivation

Starting from Navier-Stokes equation in coordinate invariant form

(See Abraham, Marsden, Ratiu, "Manifolds, Tensor Analysis and

Applications”)

ou’

ot

+ p(6d + do)u’ + £,u ——d(u (u))+dp=0

where ¢ is the codifferential operator defined as
§ = (_1)N(k—1)+1 % d*.

Using Cartan

homotopy formula:

£au’ = digt’ + iydu’ = d(v’ (u)) + jydu’

b
%—+u6du + iydu’ + d(u (u))+dp=0.
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An Alternative Derivation: Cont.

b
%—+m§du + igdu’ + d(u (u))+dp=0.

o Defining the dynamic pressure O-form as p9 = =p+s5 Lub(u)).
o Substitute with § = (=1)NV*1 x dx.

@ Substitute for the contraction with [A. Hirani, PhD Dissertation,

Caltech (2003)]
iver = (=1)KN=K) (e A xP)

ou’
ot

Applying the exterior derivative (d) to the above equation

+ (DM e d s du’ + (DN 2 % (U A +du”) +dp? = 0.

ddu’
ot
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Domain Discretization

N
-
=

<14

@ The domain € is approximated by the simplicial complex K.
o A k-simplex is denoted by o = [vp, ..., ] € K.
@ The circumcentric dual to the simplicial complex K is the dual

complex *K.
e For a primal k-simplex o* € K, its dual is an (N - k)-cell "

denoted by xo¥ € xK
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Discrete Exterior Calculus

@ The DEC operators (e.g. exterior derivative, Hodge star,
wedge product, etc) have the advantage that they satisfy the
same rules/identities that characterizes their smooth
counterparts.

@ Such mimetic behavior of the discrete operators is known to
result in preserving the physics implied in the smooth
governing equations at the discrete level.
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Discrete Exterior Calculus

@ Discrete differential forms: a discrete form
can be thought as the integration of the
smooth form over a discrete mesh object;
i.e. line, area or volume.

@ For example, for the smooth velocity 1-form
u®, its discretization can be defined:

e on primal edges o' as v = ]01 u dl.
o on dual edges *xol as u = f*crl u dl.

Samtaney, NASA Ames, July 30 2015 Navier-Stokes DEC



Discrete Exterior Calculus

The space of discrete k-forms defined on primal and dual mesh
complexes is denoted by C¥(K) and D¥(xK), respectively.

oK) —2, (k) —E. k)

l*° l*l l*z

-dg df
D?(xK) D'(xK) «—— D°(xK)

oK) —2, (k) 2. k) —L (k)

J*” l*l l*2 l*3

T T
dO

df d
D3(xK) «—— D2(+K) «—— DY(+K) «—— D°(xK)
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Discrete Exterior Calculus
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Discrete Exterior Calculus

For the discrete wedge product, we use the definition in [ Hirani Ph.D.
dissertation (2003)] for primal-primal wedge product:

The wedge product between a discrete primal
1-form « and a discrete primal 0-form /3 defined
over a primal edge [0,1] is

(07 5, [0,1) = S e [0 11045, 10]) + (8. [11).

The discrete wedge product expression for the
whole mesh:

ag a9 0 O

0 a1 Q7 0 l’go
- (0% 0 (%] 0 1
2 0 a3 0 Qa3 /82 _
B3 S s

0 0 g Oy
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2D Discretization

The discretization of NS equations is carried out here following the
exact fractional step method [Hall et. al (1991), Chang et. al (2002)],
consisting of two steps:

@ The discretization is carried out for the vorticity form of
Navier-Stokes equations.

@ Substitute the velocity by its definition as the curl of a stream
function.
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2D Discretization: Cont.

ddu® N+1 b N b b
W+(—1) pud * d * du’ + (=1)"d * (u’ A *du’) = 0.
4 4 11 7
d d % “
COK) —— CY(K) —— C(K) YL\ P
A ' "
l*o l*l l*z o-«@I D— § w<ia
%, i A
ar ix At e
D2(xK) P 2 DY(xK) «—— D°(xK) bl B
n+1 n
LTV Y T e do xgt [~dT U+ dpV]

At

—d{ 1 W, 5t [-dJ U+ dpV] = 0. b2
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2D Discretization: Cont.

The discrete representation of the continuity equation is:
+ody #11 U =0
U is in the null space of [*2dy*71].
[#2d1#7"][*1do] = #2d1dg = 0
The vector U can uniquely be expressed in terms of the basis

[*1do]
U-= *1dow
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2D Discretization: Cont.

- Un+1 —_yr

~dg = +pd] %1 do #gt [-dd U+dpV]

—dd 1 W, %t [-dd U+dpV]=0.

Substitute with U = %1dgV

1
_A_tdOT w1 doW™ L — pdd %1 dg #gt A *1 doW

+dd *1 W, %ot d] #1doW = F.

F = azdg U - udg +1do " dpV/ +dg 1 Wy gt dpV

6

Samtaney, NASA Ames, July 30 2015 Navier-Stokes DEC



2D Discretization: Cont.

The linear system is solved in two steps as a predictor-corrector
method.

@ First, we advance the system explicitly by a half time step

[——0 5Atd(—)r *1 do] \U’H%

= F+[,udg— *1 dg *61 d(-)r—d(;r *1 W) *61 d(-)r] u"

1
1 1 1 n+s
Yt = U2 =%dgV™ 2 = W, 2

@ Then solve the linear system semi-implicitly

1
Y

1
n+s  _
+dd *#1 W, 2 xgtdg #1do]W™ = F

dd *1do—pd] *1do*gtdd *1 do

The evaluation of the tangential velocity at (n+ %) was shown S s

[Perot (2000)] to be necessary for kinetic energy conservation.
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Conservation Properties: Mass conservation

U= >(-1d0\|f
The discrete continuity equation is:
sod; #71 U =0

[#2dy#7 ] [*1do]W = %2d1doW = 0

The developed formulation guarantees the
mass conservation up to the machine
precision, regardless of the error incurred
during the linear system solution.
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Conservation Properties: Vorticity conservation

_d(')/_ Un+1 _ dOT un

T —11 4T T —17 4T
At +pdg *1do*g~[~do U]=dg 1 Wy *g"[-dg U] =0
d(-)r Un+1 _ dg— un - -
- +pdg [*#1doX] —dg [*1 W X]=0
At
. 4 7
@ The vorticity out-flux from a dual cell t 3
- »2 Sa
boundary is exactly equal to the W L\ T
L . . h -0 N
vorticity in-flux to the neighboring A A R,
dual cell. ™ A Fan
@ The vorticity is conserved locally and I\\r_,r‘s -3 §*v\_1/’12
globally up to the machine precision. A A
2 3 9 =
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How this discretization is different?

@ The discretization is entirely based on the DEC framework.

@ The discretization is similar to some of the covolume method
discretizations only for the special case of 2D structured
triangular mesh on flat domains, but different otherwise.

@ Unlike all covolume discretizations, the current discretization

is capable of simulating flows over both flat and curved
surfaces.
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Results: Driven cavity

@ The driven cavity flow is
simulated at Re = 1000.

@ The simulations are carried out
on a Delaunay mesh and a
structured-triangular mesh with
32482 and 32258 elements,
respectively — almost the same
resolution as a 128 x 128
Cartesian mesh.

@ The time step At =0.1, and the

steady solution is attained at
almost T =100.

Samtaney, NASA Ames, July 30 2015 Navier-Stokes DEC



Results: Driven cavity

1
04
08
0.2
06
0
> >
04
-0.2
02 Structured mesh 04 g:‘;‘:::;:dm':::h
Delaunay mesh 04
[ ] Ghia, Rey=|000 L Ghia, Re=1000
Lty ) . . . .
0 -0.4 -0.2 0 0.2 0.4 0.6 0.8 06 0.2 0.4 0.6 08
v X

Figure: Cross-section of the steady velocity profile (T = 100) at the two
domain center lines for driven cavity test case at Reynolds number =
1000. The simulation results are compared with Ghia (1982).
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Results: Taylor-Green vortices

@ The decay of Taylor-Green
vortices with time has an
analytical solution that for the
2D case is expressed as

uy = —cos(x)sin(y)e " o/ -

using a Delaunay mesh L
consisting of 50852 elements, a N ~— .
time step At =0.1 and 2F P )
kinematic viscosity v = 0.01. i \ AN

uy = sin(x)cos(y)e 2"t L i
@ The simulation is conducted - of\f‘ v I } l 1/7

@ Periodic boundary conditions ) o X
applied on all domain L
boundaries.
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Results: Taylor-Green vortices

Figure: The vorticity contour plot for Taylor-Green vortices at time (a)
T=0, (b) T =10.
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Results: Taylor-Green vortices

_ —&— Analytical
——E&—— Analytical Simulation

Simulation

05

-0.5

Figure: Cross-section of the velocity x and y-components profile at the
two domain center lines for Taylor-Green vortices at time T = 10.
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Results: Poiseuille flow

@ The Poiseuille flow has a steady analytical solution in a unit
square with p=1.0
ux=y(l-y), uy =0

@ The [2-norm of the velocity 1-form (u) error is calculated
according to Hall et al.(1991) as

1/2
” yexact _ u” — I:E(uexact _ U)2|(71| | % 01|]

ol

@ The simulation is carried out for structured-triangular,
Delaunay and well-centered meshes of different resolutions.
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Results: Poiseuille flow

10"
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F g——— —
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- — -@—- Flux: Structured mesh
10" — -m— - Velocity: Delaunay mesh
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10° — -#— - Velocity: Well-centered mesh
[ -@— - Flux: Well-centered mesh
—_—-—- Velcclly Struclured mesh (frum exacl flux)
-9
10 002 004 00600801
Mesh Length
e The u (flux) convergence is of a second order

rate for the structured-triangular mesh case, and with a first
order rate unstructured meshes.

@ The converges in the first order fashion due to <
its first order interpolation scheme.
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Results: Double shear layer

@ The initial flow for double shear layer
represents a shear layer of finite thickness
with a small magnitude of vertical velocity
perturbation

_ Jtanh((y - 0.25)/p), for y <0.5,
tanh((0.75-y)/p), for y>0.5,

uy = 0sin(27x)

with p =1/30 and ¢ = 0.05.
@ The simulation is carried out for an inviscid flow (u = 0).
o Five simulations are conducted using a time step of
At =0.001 on structured-triangular meshes with number of
elements equal to 3042, 12482, 32258, 50562 and 204800.
@ Periodic boundary conditions applied on all domain KAUST
boundaries.
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Results: Double shear layer
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ShearLayer1.mp4
Media File (video/mp4)


Results: Double shear layer

o The kinetic energy is calculated as [, u.u d<.

@ The relative kinetic energy error (%(KOI)‘:(T)) is calculated

at simulation time T = 2.0.

10?
/
- Second order slope ,
o u
= /
$ /
= 10° s
TB' F /
° - -
; o
= s/
S /
c . 7/
Q 107" |
(3] -
=
(V]
£
X
&
5 ) M | . M KAUST
10707 10° 10"

Mesh characteristic length
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Results: Taylor vortices

@ The vorticity distribution for each Taylor
vortex is expressed as [A. McKenzie, PhD
Dissertation, CalTech (2007)]

=& o 2)eno5(1-2))

with G =1.0, a=0.3.

@ The domain is initialized with two vortices
separated by a distance of 0.8.

3

@ The simulations are carried out for an inviscid flow (x = 0) on
a mesh consisting of 132204 equilateral triangular element,
using various time steps in the range [1.0 — 0.002].

@ Periodic boundary conditions applied on all domain ‘
boundaries. S st
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Results: Taylor vortices
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TaylorVorticesflatDomain.mp4
Media File (video/mp4)


Results: Taylor vortices

The relative kinetic energy error (

simulation time T = 20.0.

Kinetic energy relative error

10°

KE(0)-KE(T)
KE(0)

) is calculated at

URBLLL e

/
3 -
- v
;Second order slope/ /m
L v
g /
N /-
= A
F
L
L I | sl Ll L
° 10° 107 10°

Time step
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Results: Vortex leapfrogging
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Leapfrog-animation-final.mp4
Media File (video/mp4)


Results: Taylor vortices on a spherical surface

@ A unit sphere surface is initialized with two
vortices, separated by a distance of 0.4,
having the distribution

€2 Z)on(051-2)

with G =0.5, a=0.1.

@ The simulation is carried out for an inviscid flow (u = 0) using
a mesh containing 327680 triangular elements, with various
time steps in the range [1.0 - 0.05].

e)
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Results: Taylor vortices on a spherical surface
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sphereTaylorVortex.avi
Media File (video/avi)


Results: Taylor vortices on a spherical surface

The relative kinetic energy error (%{gm) is calculated at

simulation time T = 10.0.

10°
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Time step
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Results: Vortices ring on a spherical surface

@ Consider N equidistant point vortices,
having the same strength, positioned on a
circle with fixed latitude on a spherical
surface .[Polvani et. al (1993)].

@ It was shown analytically that the vortices
will rotate around the z-axis in a stable /
fashion given that the circle's latitude 6 < 6. h

and the number of vortices N <7. Figure: [Vankerschaver et. al

@ For N =6, the critical polar angle 6. ~ 0.464. (2014)]

B (t’
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Results: Vortices ring on a spherical surface

@ the point vortices are replaced with vortices
having the distribution

~ T
- 3r
cosh?(=)

with 7 = 3.0 to be the vortex strength,
a=0.15 is the vortex radius.

@ The vortices are placed on a unit sphere at
latitude 6 = 0.4.

@ The spherical surface is meshed with 81920
elements, and the simulation is conducted
for an inviscid flow (p = 0) with a time step
At =0.005.

KAUST
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Results: Vortices ring on a spherical surface

Figure: The vorticity contour plot for 6 vortices on a spherical surface at
latitude 6 = 0.4 at time: (a) T=0.0 and (b) T=36.0.

The cyclic motion of the vortices can be captured by monitoring ‘50

the relative solution change (W) w.r.t. the initial solution.
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Results: Vortices ring on a spherical surface

The relative solution change (W).

0.25

=}

° = o

— 3 o
T

Relative solution change

o
o
a

6

ol v e v g v o
0 10 20 30 40 50

Time

Samtaney, NASA Ames, July 30 2015 Navier-Stokes DEC



Results: Vortices ring on a spherical surface

Vorticity

0 1 2 3 4 5 6
Azimuthal angle
The relative change in the kinetic energy at time T =36 is :
KE(T=0)-KE(T=36) _ -6
RE(T=0) =9.0x107".
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Conclusions

@ A conservative discretization for NS equations was derived
using DEC.

@ The scheme converges with second order for
structured /semi-structured meshes, and first order for
otherwise unstructured meshes.

@ The mass and vorticity were conserved up to machine
precision for all conducted test cases.
@ The kinetic energy converges with second order with the mesh

size and time step for the tested cases on
structured /semi-structured meshes.

6

KAUST

Samtaney, NASA Ames, July 30 2015 Navier-Stokes DEC



